電波を扱う人が避けて通れないのがdB(デシベル)計算です。陸上無線技術士など電波系の資格試験ではもちろん、現場でも測定器の結果を見ながらその場でdBmからWに換算したりします。
dBの計算は難しくありません。dBの計算は、初歩的な対数の計算に過ぎず、覚えるべきことは僅か3つだけです。ただし、ちょっと癖があるので、練習の必要があります。ブラインドタッチみたいなものです。一度習得すれば、そうそう忘れません。
ということで、練習問題を30問ほど用意してみました。これがスラスラとできるようになれば、まず問題ないかと思います。
覚えることは3つしかない
dB(デシベル)とは何かは、他の解説記事に譲ります。デシベル計算において、おさえなくてはならないことは以下の3点です。
- 電力比P1/P2をdBで表現する…[dB] = 10log(P1/P2)
- 1mW = 0dBm(でーびーえむ)
- 10log(2)=3, 10log(3)=5(または4.8)
これだけ覚えておけば、あとはその場で導けます。余裕があれば、10log(7)=8.5も覚えると幅が広がりますが、あまり使わないので覚えてなくてよいです。
なお、対数については理解しているものとします。対数がわからない人は、別途勉強しなくてはいけません。対数は高校数学の範囲なので、調べれば色々出てくると思います。
まぁでも、\(\log{(xy)} = \log{x} + \log{y} \)と\(\log{(x/y)} = \log{x} - \log{y} \)さえ受け入れてしまえば、よくわかっていなくても計算できます。。。ざっくりと概念を知ったら、dBの計算問題を通して対数そのものも体得する、というプランも悪くないかもしれません。
例題5問
習うより慣れよ。いくつかの例題でおさえます。次のdBmをmWに換算してください。
- 0 dBm = ?
- 3 dBm = ?
- 6 dBm = ?
- 8 dBm = ?
- 10 dBm = ?
解答。
- 0 dBm = 1 mW これは定義です。
- 3 dBm = 0 dBm + 3 dB = 1 mW * 2 = 2 mW
- 6 dBm = 0 dBm + (3 + 3) dB = 1mW * (2 * 2) = 4 mW
- 8 dBm = 0 dBm + (3 + 5) dB = 1mW * (2 * 3) = 6 mW
- 10 dBm = 0 dBm + 10 dB = 1mW * 10 = 10mW * 10 = 10 mW
(10log10 = 10より、10dB = 10)
これくらいは基本として…。
練習
もうちょっと難しい問題をやっていきます。
基本10問
基本問題。
- 20 dBm = ?
- 13 dBm = ?
- 16 dBm = ?
- 23 dBm = ?
- -3 dBm = ?
- -5 dBm = ?
- -10 dBm = ?
- 7 dBm = ?
- 27 dBm = ?
- -7 dBm = ?
解答。
- 20 dBm = 0 dBm + (10 + 10) dB = 1 mW * (10 * 10) = 100 mW
- 13 dBm = 0 dBm + (10 + 3) dB = 1 mW * (10 * 2) = 20 mW
- 16 dBm = 0 dBm + (10 + 3 + 3) dB = 1 mW * (10 * 2 * 2) = 40 mW
- 23 dBm = 0 dBm + (10 + 10 + 3) dB = 1 mW * (10 * 10 * 2) = 200 mW
- -3 dBm = 0 dBm - 3 dB = 1 mW / 2 = 0.5 mW
- -5 dBm = 0 dBm - 5 dB = 1 mW / 3 = 0.33 mW
- -10 dBm = 0 dBm - 10 dB = 1 mW / 10 = 0.1mW
- 7 dBm = 0 dBm + (10 - 3) dB = 1 mW * (10 / 2) = 5 mW
- 27 dBm = 0 dBm + (10 + 10 + 10 - 3) dB = 1 mW * (10 * 10 * 10 / 2) = 500 mW
- -7 dBm = 0 dBm -10 dB + 3 dB = 1 mW / 10 * 2 = 0.2 mW
さらに基本10問
次のdBmを、適切なW、mW、uW、nWにしてください。1W = 1000mW、1mW = 1000uW、1uW = 1000nW です。これくらいできれば資格試験には困らないかと。
- 30 dBm = ?
- -30 dBm = ?
- -60 dBm = ?
- 33 dBm = ?
- 46 dBm = ?
- -40 dBm = ?
- -43 dBm = ?
- -57 dBm = ?
- -45 dBm = ?
- -22 dBm = ?
解答。
- 30 dBm = 0 dBm + (10+10+10) dB = 1 mW * (10*10*10) = 1000 mW = 1 W
- -30 dBm = 0 dBm - (10+10+10) dB = 1 mW / (10*10*10) = 0.001 mW = 1 uW
- -60 dBm = -30 dBm - (10+10+10) dB = 1 uW / (10*10*10) = 0.001 uW = 1 nW
- 33 dBm = 30 dBm + 3 dB = 1W * 2 = 2 W
- 46 dBm = 30 dBm + (10+3+3) dB = 1W * (10*2*2) = 40 W
- -40 dBm = -30 dBm - 10 dB = 1 uW / 10 = 0.1 uW
- -43 dBm = -30 dBm - (10+3) dB = 1 uW / (10*2) = 0.05 uW = 50 nW
- -57 dBm = -60 dBm + 3 dB = 1 nW * 2 = 2 nW
- -45 dBm = -60 dBm + (10 + 5) dB = 1 nW * (10*3) = 30 nW
- -22 dBm = -30 dBm + (5+3) dB = 1uW * (3*2) = 6 uW
近似式なので、掛け算を使うか割り算を使うかでも答えは微妙に変わります。また、できれば3->5dBより2->3dBを優先。log(3)=0.48なので、ちょっと誤差が大きい(特に3は割り切れないことが多いので、割り算するとさらに…)。
応用5問
応用という程でもありませんが、初めてみるとぎょっとするかも。ここまでできれば、まず問題ないんじゃないでしょうか。
- 12 dBm = ?
- 2 dBm = ?
- 11 dBm = ?
- 21 dBm = ?
- -42 dBm = ?
解答。
- 12 dBm = 0 dBm + (3+3+3+3) dB = 1 mW * (2*2*2*2) = 16 mW
12=20-8と考えてもよい。その場合100/(2*3)=17 mW。誤差の理由は前述のとおり - 2 dBm = 0 dBm + (12 - 10) dB = 1mW * (16/10) = 1.6 mW
(上の問題より12 dB = 16)
2 = 10 - (5+3) と考えてもよい。その場合10/(2*3) = 1.7 mW - 11 dBm = 0 dBm + (20 - 9) = 0 dBm + ((10+10) - (3+3+3)) = 1 mW * (10*10) / (2*2*2) = 1 mW * 100 / 8 = 12.5 mW
- 21 dBm = 30 dBm - 9 dB = 30 dBm - (3+3+3) dB = 1 W / (2^3) = 0.125 W
21 = 3*7 と考えてもよい。その場合2^7 = 128mW - -42 dBm = -60 dBm + 18 dB = -60 dBm + (3+3+3+3+3+3) = 1 nW * (2^6) = 64 nW
-42 = -30-12 と考えてもよい。その場合1uW/2^4=1uW/16=0.0625uW =62.5nW
近似式なので、考え方が変わると答えも微妙に変わります。その時々で、パッと思いついたほうで計算すればOKです。そんなもんです。
おまけ
補足的な。
2.15dBに迫ってみる
おまけの問題。
2.15 dBm = ?
2.15dB、それは半波長ダイポールアンテナの絶対利得。無線の資格を勉強中の人なら「出たー」という感じでしょうか。この2.15dBに迫ってみます。
基本的に小数点のつくデシベル計算は、手計算だとちょっと厳しい。試験でも出ませんし、現場の計算でもそこまでの精度は求められません。なのでまぁ、お遊びです。
今までの知識を使って、遊んでみます。
…計算中…
では。
まず2dB=(12-10)dBなので、(2^4)/10。次に3dBのとき真数2なので、1.6以上2以下…では面白くないですね、はい。
ここで思い出すべきは、10log(3)=5ではなく、実際には10log(3)=4.8のほうが近いということです。つまり、10-(4.8+3)=2.2なので、2.2dB = 10/(3*2)=1.666……うむ、1.67と考えましょう。1.6以上1.67以下。
ここまできたら2.1dBの値に迫れないだろうか。とにかく小数点が使えるものは……と、考えて、ここで、今まで一切使わなかった10log(7) = 8.5 を思い出します。これを使うと、2.1=(10-9) + 4.8 + 4.8 -8.5と書けます。よって、2.1dB -> (10/2^3) * (3^2) / 7 = 90/56 = 1.607...…1.61と考えましょう。
ざっくりと、2dBは1.6、2.1dBは1.61、2.2dBで1.67…有効数字とか色々いい加減ですが勘弁。この感じでいくと、1.63くらいな感じがします。してください。
ということで、2.15 dBm = 1.63 mWくらいだろう!という推測。
さて、コンピュータを使って正解を求めると、2.15dBは……約1.64!おお近いではありませんかってもちろん知ってましたすみません。まぁこういう遊びをしていると、覚えられるということで、ご笑覧ください。コンピュータの有り難みがわかるというものです。
電圧比
電圧比は20log(P1/P2)と表現されるので、dBは電力の場合の2倍になります(P=IV=V^2/Rから類推)。たとえば電圧比が2倍のとき、デシベルは6dBです。
mWからdBmへの変換
mWからdBmへの変換は、上の計算の逆パターンです。たとえば送信電力が80mWと与えられていれば、80=10*2^3より10+3*3=19dBm、くらいの計算はちょこちょこと必要です。そして90mWと言われれば、30mWの3倍だから14.8 + 4.8=19.6dBm…と計算してもよいですけれど、ほとんど100mWと考えて20dBm気持ち下、くらいの精度で十分です。だいたいでいいんです。だいたいで。
コメント